Richard Heinberg

Richard Heinberg is a senior fellow at the Post Carbon Institute and the author of Power: Limits and Prospects for Human Survival.

The Renewable Energy Transition Is Failing

385 views
6 mins read

Despite all the renewable energy investments and installations, actual global greenhouse gas emissions keep increasing. That’s largely due to economic growth: While renewable energy supplies have expanded in recent years, world energy usage has ballooned even more—with the difference being supplied by fossil fuels. The more the world economy grows, the harder it is for additions of renewable energy to turn the tide by actually replacing energy from fossil fuels, rather than just adding to it.

The notion of voluntarily reining in economic growth in order to minimize climate change and make it easier to replace fossil fuels is political anathema not just in the rich countries, whose people have gotten used to consuming at extraordinarily high rates, but even more so in poorer countries, which have been promised the opportunity to “develop.”

After all, it is the rich countries that have been responsible for the great majority of past emissions (which are driving climate change presently); indeed, these countries got rich largely by the industrial activity of which carbon emissions were a byproduct. Now it is the world’s poorest nations that are experiencing the brunt of the impacts of climate change caused by the world’s richest. It’s neither sustainable nor just to perpetuate the exploitation of land, resources, and labor in the less industrialized countries, as well as historically exploited communities in the rich countries, to maintain both the lifestyles and expectations of further growth of the wealthy minority.

From the perspective of people in less-industrialized nations, it’s natural to want to consume more, which only seems fair. But that translates to more global economic growth, and a harder time replacing fossil fuels with renewables globally. China is the exemplar of this conundrum: Over the past three decades, the world’s most populous nation lifted hundreds of millions of its people out of poverty, but in the process became the world’s biggest producer and consumer of coal.

The Materials Dilemma

Also posing an enormous difficulty for a societal switch from fossil fuels to renewable energy sources is our increasing need for minerals and metals. The World Bank, the IEA, the IMF, and McKinsey and Company have all issued reports in the last couple of years warning of this growing problem. Vast quantities of minerals and metals will be required not just for making solar panels and wind turbines, but also for batteries, electric vehicles, and new industrial equipment that runs on electricity rather than carbon-based fuels.

Some of these materials are already showing signs of increasing scarcity: According to the World Economic Forum, the average cost of producing copper has risen by over 300 percent in recent years, while copper ore grade has dropped by 30 percent.

Optimistic assessments of the materials challenge suggest there are enough global reserves for a one-time build-out of all the new devices and infrastructure needed (assuming some substitutions, with, for example, lithium for batteries eventually being replaced by more abundant elements like iron). But what is society to do as that first generation of devices and infrastructure ages and requires replacement?

Circular Economy: A Mirage?

Hence the rather sudden and widespread interest in the creation of a circular economy in which everything is recycled endlessly. Unfortunately, as economist Nicholas Georgescu-Roegen discovered in his pioneering work on entropy, recycling is always incomplete and always costs energy. Materials typically degrade during each cycle of use, and some material is wasted in the recycling process.

A French preliminary analysis of the energy transition that assumed maximum possible recycling found that a materials supply crisis could be delayed by up to three centuries. But will the circular economy (itself an enormous undertaking and a distant goal) arrive in time to buy industrial civilization those extra 300 years? Or will we run out of critical materials in just the next few decades in our frantic effort to build as many renewable energy devices as we can in as short a time as possible?

The latter outcome seems more likely if pessimistic resource estimates turn out to be accurate. Simon Michaux of the Finnish Geological Survey finds that “[g]lobal reserves are not large enough to supply enough metals to build the renewable non-fossil fuels industrial system … Mineral deposit discovery has been declining for many metals. The grade of processed ore for many of the industrial metals has been decreasing over time, resulting in declining mineral processing yield. This has the implication of the increase in mining energy consumption per unit of metal.”

Steel prices are already trending higher, and lithium supplies may prove to be a bottleneck to rapidly increasing battery production. Even sand is getting scarce: Only certain grades of the stuff are useful in making concrete (which anchors wind turbines) or silicon (which is essential for solar panels). More sand is consumed yearly than any other material besides water, and some climate scientists have identified it as a key sustainability challenge this century. Predictably, as deposits are depleted, sand is becoming more of a geopolitical flashpoint, with China recently embargoing sand shipments to Taiwan with the intention of crippling Taiwan’s ability to manufacture semiconductor devices such as cell phones.

To Reduce Risk, Reduce Scale

During the fossil fuel era, the global economy depended on ever-increasing rates of extracting and burning coal, oil, and natural gas. The renewables era (if it indeed comes into being) will be founded upon the large-scale extraction of minerals and metals for panels, turbines, batteries, and other infrastructure, which will require periodic replacement.

These two economic eras imply different risks: The fossil fuel regime risked depletion and pollution (notably atmospheric carbon pollution leading to climate change); the renewables regime will likewise risk depletion (from mining minerals and metals) and pollution (from dumping old panels, turbines, and batteries, and from various manufacturing processes), but with diminished vulnerability to climate change. The only way to lessen risk altogether would be to reduce substantially society’s scale of energy and materials usage—but very few policymakers or climate advocacy organizations are exploring that possibility.

Climate Change Hobbles Efforts to Combat Climate Change

As daunting as they are, the financial, political, and material challenges to the energy transition don’t exhaust the list of potential barriers. Climate change itself is also hampering the energy transition—which, of course, is being undertaken to avert climate change.

During the summer of 2022, China experienced its most intense heat wave in six decades. It impacted a wide region, from central Sichuan Province to coastal Jiangsu, with temperatures often topping 40 degrees Celsius, or 104 degrees Fahrenheit, and reaching a record 113 degrees in Chongqing on August 18. At the same time, a drought-induced power crisis forced Contemporary Amperex Technology Co., the world’s top battery maker, to close manufacturing plants in China’s Sichuan province. Supplies of crucial parts to Tesla and Toyota were temporarily cut off.

Meanwhile, a similarly grim story unfolded in Germany, as a record drought reduced the water flow in the Rhine River to levels that crippled European trade, halting shipments of diesel and coal, and threatening the operations of both hydroelectric and nuclear power plants.

A study published in February 2022 in the journal Water found that droughts (which are becoming more frequent and severe with climate change) could create challenges for U.S. hydropower in Montana, Nevada, Texas, Arizona, California, Arkansas, and Oklahoma.

Meanwhile, French nuclear plants that rely on the Rhône River for cooling water have had to shut down repeatedly. If reactors expel water downstream that’s too hot, aquatic life is wiped out as a result. So, during the sweltering 2022 summer, Électricité de France (EDF) powered down reactors not only along the Rhône but also on a second major river in the south, the Garonne. Altogether, France’s nuclear power output has been cut by nearly 50 percent during the summer of 2022. Similar drought- and heat-related shutdowns happened in 2018 and 2019.

Heavy rain and flooding can also pose risks for both hydro and nuclear power—which together currently provide roughly four times as much low-carbon electricity globally as wind and solar combined. In March 2019, severe flooding in southern and western Africa, following Cyclone Idai, damaged two major hydro plants in Malawi, cutting off power to parts of the country for several days.

Wind turbines and solar panels also rely on the weather and are therefore also vulnerable to extremes. Cold, cloudy days with virtually no wind spell trouble for regions heavily reliant on renewable energy. Freak storms can damage solar panels, and high temperatures reduce panels’ efficiency. Hurricanes and storm surges can cripple offshore wind farms.

The transition from fossil fuel to renewables faces an uphill battle. Still, this switch is an essential stopgap strategy to keep electricity grids up and running, at least on a minimal scale, as civilization inevitably turns away from a depleting store of oil and gas. The world has become so dependent on grid power for communications, finance, and the preservation of technical, scientific, and cultural knowledge that, if the grids were to go down permanently and soon, it is likely that billions of people would die, and the survivors would be culturally destitute. In essence, we need renewables for a controlled soft landing. But the harsh reality is that, for now, and in the foreseeable future, the energy transition is not going well and has poor overall prospects.

We need a realistic plan for energy descent, instead of foolish dreams of eternal consumer abundance by means other than fossil fuels. Currently, politically rooted insistence on continued economic growth is discouraging truth-telling and serious planning for how to live well with less.

Is the Energy Transition Taking Off—or Hitting a Wall?

/
431 views
5 mins read

The passage of the Inflation Reduction Act (IRA) constitutes the boldest climate action so far by the American federal government. It offers tax rebates to buyers of electric cars, solar panels, heat pumps, and other renewable-energy and energy-efficiency equipment. It encourages the development of carbon-capture technology and promotes environmental justice by cleaning up pollution and providing renewable energy in disadvantaged communities. Does this political achievement mean that the energy transition, in the U.S. if not the world as a whole, is finally on track to achieving the goal of net zero emissions by 2050?

If only it were so.

Emissions modelers have estimated that the IRA will reduce U.S. emissions by 40 percent by 2030. But, as Benjamin Storrow at Scientific American has pointed out, the modelers fail to take real-world constraints into account. For one thing, building out massive new renewable energy infrastructure will require new long-distance transmission lines, and entirely foreseeable problems with permitting, materials, and local politics cast doubt on whether those lines can be built.

But perhaps the most frustrating barriers to grid modernization are the political ones. While Texas produces a significant amount of wind and solar electricity, it is unable to share that bounty with neighboring states because it has a stand-alone grid. And that’s unlikely to change because Texas politicians fear that connecting their grid with a larger region would open the state’s electricity system to federal regulation. Similar state-based regulatory heel-dragging is pervasive elsewhere. In a report posted in July, the North Carolina Clean Energy Technology Center noted that, so far this year, Texas regulators have approved only $478.7 million out of the $12.86 billion (3.7 percent) in grid modernization investment under consideration, due to fears of raising utility bills for local residents.

But grid modernization is only one area in which the energy transition is confronting roadblocks in the U.S.

Certainly, as a result of the IRA, more electric vehicles (EVs) will be purchased. California’s recent ruling to phase out new gas-powered cars by 2035 will buttress that trend. Currently, just under 5 percent of cars sold in the U.S. are EVs. By 2030, some projections suggest the proportion will be half, and by 2050 the great majority of light-duty vehicles on the road should be electric. However, those estimates assume that enough vehicles can be manufactured: Supply-chain issues for electronics and for battery materials have slowed deliveries of EVs in recent months, and those issues could worsen. Further, the IRA electric-vehicle tax credits will go only to buyers of cars whose materials are sourced in the U.S. That’s probably good in the long run, as it will reduce reliance on long supply chains for materials. But it raises questions about localized environmental and human impacts of increased mining.

Many environmentalists are thrilled with the IRA; others less so. Those in the more critical camp have pointed disapprovingly to the bill’s promotion of nuclear, and note that, in order to gain Senator Joe Manchin’s vote, Democrats agreed to streamline oil and gas pipeline approvals in a separate bill. In effect, the government will be encouraging the increasing use of fossil fuels… in order to reduce our reliance on fossil fuels.

Despite the flaws of the Inflation Reduction Act, it is likely the best that the federal government can accomplish in terms of climate progress for the foreseeable future. The U.S. is a country mired in institutional gridlock, its politics trapped in endless culture wars, with a durable Supreme Court majority intent on hampering the government’s ability to regulate carbon emissions.

Climate leadership is needed in the U.S., the country responsible for the largest share of historic emissions and is the second-biggest emitter (on a per-capita basis, the U.S. ranks far ahead of China, the top emitter). Without the U.S., global progress in reducing greenhouse gas emissions will be difficult. But the American political system, pivotal as it is in the project, is only the tip of the proverbial iceberg of problems with the shift from fossil fuels to renewables. The barriers to meeting climate goals are global and pervasive.

Global Inertia and Roadblocks

Consider Germany, which has been working on energy transition longer and harder than any other large industrial nation. Now, as Russia is withholding natural gas supplies following its invasion of Ukraine and NATO’s hostile reaction, German electricity supplies are tight and about to get tighter. In response, Germany’s Green Party is leading the push to restart coal power plants rather than halting the planned shuttering of nuclear power plants. And it’s splitting environmentalists. Further, the country’s electricity problems have been exacerbated by a lack of, well, wind.

Unless Russia increases natural gas supplies headed west, European manufacturing could largely shut down this winter—including the manufacturing of renewable energy and related technologies. UK day-ahead wholesale electricity prices have hit 10 times the last decade’s average price, and Europe faces energy scarcity this winter. French President Emmanuel Macron recently warned that his people face the “end of abundance.”

Inadequate spending is also inhibiting a renewables takeoff. Last year, EU member states spent over $150 billion on the energy transition, compared to about $120 billion by the U.S. Meanwhile, China spent nearly $300 billion on renewable energy and related technologies. According to the China Renewable Energy Engineering Institute, the country will install 156 gigawatts of wind turbines and solar panels this year. In comparison, the U.S., under the Inflation Reduction Act, would grow renewable energy annual additions from the current rate of about 25 GW per year to roughly 90 GW per year by 2025, with growth rates increasing thereafter, according to an analysis by researchers at Princeton University.

The recent remarkable increase in spending is far from sufficient. Last year, the world spent a total of about $530 billion on the energy transition (for comparison’s sake, the world spent $700 billion on fossil fuel subsidies in 2021). However, to bring worldwide energy-related carbon dioxide emissions to be net zero by 2050, annual capital investment in the transition would need to grow by over 900 percent, reaching nearly $5 trillion by 2030, according to the International Energy Agency. Bloomberg writer Aaron Clark notes, “The one thing public climate spending plans in the U.S., China, and the EU all have in common is that the investments aren’t enough.”

There’s one other hurdle to addressing climate change that goes almost entirely unnoticed. Most cost estimates for the transition are in terms of money. What about the energy costs? It will take a tremendous amount of energy to mine materials; transport and transform them through industrial processes like smelting; turn them into solar panels, wind turbines, batteries, vehicles, infrastructure, and industrial machinery; install all of the above; and do this at a sufficient scale to replace our current fossil-fuel-based industrial system. In the early stages of the process, this energy will have to come mostly from fossil fuels, since they supply about 83 percent of current global energy. The result will surely be a pulse of emissions; however, as far as I know, nobody has tried to calculate its magnitude.

The requirement to reduce our reliance on fossil fuels represents the biggest technical challenge humanity has ever faced. To avoid the emissions pulse just mentioned, we must reduce energy usage in non-essential applications (such as for tourism or the manufacture of optional consumer goods). But such reductions will provoke social and political pushback, given that economies are structured to require continual growth, and citizens are conditioned to expect ever-higher levels of consumption. If the energy transition is the biggest technical challenge ever, it is also the biggest social, economic, and political challenge in human history. It may also turn out to be an enormous geopolitical challenge, if nations end up fighting over access to the minerals and metals that will be the enablers of the energy transition.

This article was produced by Earth | Food | Life, a project of the Independent Media Institute.